
Visualization of Software Hierarchy and Dependencies

Nico de Poel

Initiator and supervisor

Prof. Dr. Alexandru C. Telea

Contents

1 Introduction 3

2 Proposed solution 3

3 Method 4
3.1 Hierarchy visualization . 4
3.2 Focus graph visualization . 5
3.3 Links . 5

4 Implementation 7

5 Evaluation and future work 8

6 Conclusion 10

A Lua script documentation 11

B Design diagrams 15

List of Figures

1 Concept drawing of the Monopoly board layout 3
2 Revised concept of the Monopoly board layout 5
3 Example of control point unfolding . 6
4 Screenshot of the graph visualization used for performance testing 9
5 Software modules and their dependencies . 15
6 High-level overview of classes making up the Monopoly module 16

2

1 Introduction

Compound graphs are often used as an abstract data structure for representing the architecture
and design of a software project. Compound graphs can capture both the hierarchy (i.e. the
containment relations) amongst the software’s components, as well as dependencies between these
components (i.e. the association relations). Such a graph can then be visualized using one of
many graph layouts, to obtain an overview of the software’s structure. The problem is that as the
size of a software project grows, it becomes increasingly difficult to create an uncluttered view of
its hierarchy and dependencies within a single graph visualization. There are simply no known
graph layout algorithms that can display a graph containing hundreds of nodes with thousands
of arbitrary relations in a single image, while still clearly conveying both a grand overview of the
system and its subtle details.

Therefore, what we are looking for is a method to visualize very large graphs (in the order of
thousands of nodes with tens of thousands of edges), that is both easy to comprehend and to
navigate by a user. This solution should not be limited to just software diagrams, but has to be
generic enough to work for any large graph that consists of both containment and association
relations.

2 Proposed solution

The solution we propose is to split up the full graph into a tree hierarchy with all the containment
relations, and an association graph. These are then rendered using two separate visualization
methods. These visualizations are laid out onto the screen image in a way that is reminiscent of
a Monopoly game board (Fig. 1). The border area of the image (also called the context) contains
a visualization of the tree hierarchy using a known method. The central canvas area (also called
the focus area) displays a small selection of nodes from the graph and their associations using a
simple graph visualization algorithm. Associations between the focus nodes and other parts of
the graph are drawn through links between the focus and context areas.

Figure 1: Concept drawing of the Monopoly board layout

3

The general idea of this setup is that the context area is used to display a broad overview of the
graph, while the focus area is used for showing details. A user interacting with this visualization
method will be able to click on a graph node within the context area, which will extract the
selected node’s contents and display it in the focus area. This allows the user to get a closer
view of that particular area of the graph and its association with other parts of the graph. This
method should provide a highly scalable view of any type of compound graph.

3 Method

Visualization of large graphs according to the Monopoly method consists of three distinct steps:
visualization of the tree hierarchy within the context area, visualization of the highlighted sub-
graph in the focus area, and finally drawing association links between the two. The methods
used for these steps are discussed separately.

3.1 Hierarchy visualization

For the visualization of containment relations within the context area, a treemap algorithm is
used [4]. Treemaps are very good at visualizing large hierarchies within a small image area, and at
giving a clear view of proportions between subtrees. They also have many options for customizing
their looks and behavior. To further improve the clarity of the visualization, cushion treemaps
are employed. This gives each node a three dimensional appearance with a white highlight, which
makes it easier to distinguish the node from its surrounding nodes. A white 1-pixel border is
added to each node to increase this distinction even more.

Nodes can be colored individually to convey additional information about the contents of the
node. To determine the proportions between subtrees, the size of each leaf node is obtained
using a user-customizable node measure, and these sizes are added up recursively for each of
their ancestor nodes.

Using the entire border area for a single all-encompassing treemap gives rise to a considerable
problem. Because most treemap algorithms are designed to fill a rectangular area, the non-
rectangular border area would have to be subdivided into several sections, with one treemap per
section. The size of these sections would have to be proportional to the size of the subtrees that
they contain. This requires a method for partitioning the containment tree into appropriately
sized subtrees that optimally fill the available border area. Because the size of the border area
may vary at run-time (e.g. because the user resizes the window), this method should be able to
dynamically recompute an optimal partitioning.

Because no acceptable simple solution could be found for this problem, the decision was made
to instead break up the border area into eight separate rectangular areas, as shown in Figure 2.
Each independent area can then be assigned to a graph tool, displaying some kind of information
about the graph. This can be a treemap as before, but other uses are also possible, such as a
legend or a different tree visualization method. This decision effectively generalizes the concept
of the context area; the border area can contain any kind of information about the graph, not
necessarily a hierarchy visualization.

4

Figure 2: Revised concept of the Monopoly board layout

3.2 Focus graph visualization

For the visualization of the highlighted selection of nodes and edges within the canvas area, a
standard boxes-and-lines graph visualization method is used. The focus graph can be laid out
using tried and tested algorithms, such as a radial layout, a spring model layout or possibly a
circular layout. Selecting the appropriate layout algorithm can be left as an option for the user.

In the context of software diagrams, the focus visualization can be extended to display graphs
as UML class diagrams. These can include information about class members and methods, and
software metric analysis results.

Graph layouts and visualizations of this kind are commonplace and are generally considered to
be very intuitive. This makes them an obvious choice for the focus graph. Also, because the
focus graph is generally only a small subset of the complete graph (several tens of nodes at most),
most ‘normal’ graph layout method will be capable of creating an uncluttered view of the focus
graph and so they will suffice.

3.3 Links

Besides the association edges connecting nodes within the focus area to each other, there are
also edges connecting the focus graph to nodes in the context area. These edges are called links
and require a special rendering method of their own. Simple straight lines are not good enough
for this purpose; the amount of links that need to be drawn for an average graph would quickly
cause too much visual clutter to convey any useful information.

This problem of drawing association edges has been solved very elegantly by Danny Holten [1].
Holten uses the hierarchical information available within an existing tree visualization to create
control points, which are then used to draw a B-spline that connects the two nodes. This causes
edges between nodes with a common ancestry to bend towards each other, effectively ‘bundling’
edges that move along a similar path. Not only does this decrease the visual clutter, it actually
conveys additional information about how associations are concentrated within the graph.

5

Holten’s method does not translate directly to this application however, since it requires that a
path between the two nodes already exists. Holten’s method is capable of connecting two nodes
within a single hierarchy visualization, but it can not be used to connect nodes between two
independent visualizations. This meant we had to take Holten’s idea and extend it with a new
method to create control points using the available hierarchical information.

The method we pioneered is explained visually in Figure 3. When a link needs to be drawn
from a focus node to a node within the treemap, first the nodes are collected that make up
the path between the treemap’s root node and the destination node (red arrows). Of all these
nodes, the center points are taken (green dots), and this path is ‘unfolded’ onto the empty space
between the treemap and the focus graph (blue arrows). This unfolding means translating the
node positions in the direction perpendicular to the border area’s orientation. This results in a
series of control points (purple dots), from which a B-spline can be drawn (black dotted curve).

Figure 3: Example of control point unfolding

In practice, several modifications to this unfolding method are necessary to improve the quality
of the generated splines. First of all, the root node is always discarded from a path, because
every treemap node has the root as ancestor. This prevents the links from all clumping together
at a single point.
Secondly, if a node along a path has only one child node, then that child node is omitted. This
is similar to Holten’s least common ancestor technique [1], and prevents links from curving too
strongly towards a single point.
Furthermore, an additional control point is added near the focus node, in the direction of the
targeted border area. Without this, all links would start out at different angles and intersect

6

each other in awkward ways. With this addition, every link starts out in the same direction and
has to make a sharper initial bend, which improves the bundling effect.

Several other techniques from Holten’s paper have been employed to further improve the qual-
ity of the link curves. The strength of the bundling can be adjusted through a customizable
parameter. This allows users to switch the links from straight lines (bundling strength = 0) to
completely bundled curves (bundling strength = 1), or anywhere in between. On a different con-
ceptual level, this allows the user to switch between low-level details (point-to-point connections
between individual nodes), or a high-level overview of the general structure of the graph.

Links can also be color coded, to distinguish between the source and the destination of an
association. These colors are interpolated along each spline. This color coding avoids the need
to render the associations with arrows or textual annotations, which would have added visual
clutter.

Links are only drawn for focus nodes that are (partially) visible within the focus area. Not only
does this prevent links to be drawn that originate from outside the screen, it also allows the user
to zoom in on a specific part of the focus graph and view only associations for that part.

4 Implementation

The implementation of the Monopoly Graph Viewer application is based on the C++ graph
viewer framework for wxWidgets written by Alex Telea. Not only does this framework contain
a fast and fully featured OpenGL graph visualization component, it also offers a comprehensive
API for building and manipulating graph objects. A separate demonstration application built
on this framework also includes functionality for rendering graphs as UML diagrams. This
functionality has been extracted from this application and has been included in the Monopoly
Graph Viewer through a generic Graph Renderer interface. A high-level schematic overview of
the application’s design can be found in Appendix B.

Care has been taken throughout the implementation to ensure the application is compatible with
both Windows and Linux. To facilitate cross-platform development, premake [5] has been em-
ployed to allow platform-specific build scripts to be generated from a single platform independent
script file.

The implementation of the treemapping algorithms has been ported to C++ from a Java imple-
mentation written by Ben Bederson and Martin Wattenberg [4]. Although there are other im-
plementations available in C/C++, these turned out to be less generic and are more complicated
in their use because of the inclusion of custom visualization code. Porting the aforementioned
Java implementation to C++ required less work than adapting the existing C/C++ implemen-
tations, and yielded a more flexible treemapping solution. This generic treemapping API has
been extended to work with graph objects defined through Alex Telea’s graph API.

Graph data is loaded into the application from a single large data set. These can be formatted
in either Rigi Standard Format (RSF) or Graphviz’s DOT format. The application offers several
methods for extracting hierarchy and association information from a graph.

In order for the graph visualizations to be customizable by the user, some interactive elements
had to be added to the application. Implementing an intricate graphical user interface, however,

7

was deemed to be too risky. Not only does it take a lot of time to design and implement an
intuitive GUI, such a GUI is also likely to be outdated as soon as it is finished; users will always
find that certain functionality is missing. Also, since the application is merely intended as a proof
of concept, building a GUI is outside the scope of the project and not worth the investment.

Consequently, the choice was made to implement customizability by including a scripting lan-
guage. Lua [3] was chosen as the scripting language because of its easy integrability, its clean
and flexible syntax, and because much of the code for the implementation was already avail-
able. With this scripting language in place, it becomes very easy to add new functionality to
the application and quickly making it available to the user. This makes it well suited for usage
in proof-of-concept situations. Documentation for the current scripting interface is available in
Appendix A.

5 Evaluation and future work

The proposed solutions work as expected and desired. Separating the hierarchy and association
portions of a large graph and laying them out using the Monopoly method succeeds in making
both overview and fine details of the graph visible at the same time. The use of edge bundling
succesfully adds extra visual information about correlations between graph nodes.

Rendering performance of the application is real-time. Performance was tested on a graph
containing 1000 nodes and 4300 edges, with a single squarified treemap on the top border, a
selection of 23 nodes and 29 edges on the focus area, and 300 links connecting the focus and
context areas (Fig. 4). On a modest computer by today’s standards (Athlon 64 3200+, 1
GB RAM, GeForce 7600GT), after initial caching, rendering a single frame takes roughly 70
milliseconds. This means framerates are more than fast enough to allow users to smoothly
interact with the graph visualization.

Despite these good results, there is room for improvement. While the general principle of this
solution is sound, the solutions for some of the subproblems might not be optimal. Additional
experimentation might yield different and arguably better solutions.

For the hierarchy visualization, we have simply assumed that treemaps would provide a good
solution. While this turned out to be true, treemaps do have their disadvantages and other
visualization methods might give better results. The main disadvantage of treemaps for this
application is that child nodes overlap part of their ancestor nodes. A link connecting the focus
graph to such an ancestor node in a treemap will appear to be connected to one of the child
nodes instead. This makes it difficult for a user to visually pinpoint which nodes are connected
by a link.

It is worth exploring how different hierarchy visualization methods affect the behavior of link
curves. The curvature of the splines used to visualize links is determined by the location of nodes
within the hierarchy visualization. Different visualization methods will therefore also result in
different link splines; this is already demonstrated by the variety of treemapping algorithms
that have been implemented. With the current treemap algorithms, the link splines can exhibit
undesired behavior, making bends that intuitively seem to be unnecessary.

An interesting alternative to the use of treemaps might be the icicle plot. Icicle plots are designed
to give an intuitive view of the hierarchy between nodes within a graph, much like treemaps, but

8

Figure 4: Screenshot of the graph visualization used for performance testing

do so without making nodes overlap each other. The downside to this approach is that icicle plots
can not fit as much information within a certain amount of screen space as treemaps can, but
the lack of overlapping nodes would make it easier to trace the destination of a link. (Note that
the application has been designed to easily allow addition of different hierarchy visualizations,
in the shape of a Graph Tool class.)

In his paper, Holten explains a more intricate use of alpha blending for the rendering of edges
[1]. Longer curves are rendered using a lower opacity than short curves, which has the effect of
emphasizing these short curves, where normally they would be obscured by the longer curves.
Our application currently only uses straightforward alpha blending, and might benefit from this
more subtle approach.

Additionally, Holten proposes several methods for interacting with bundled edges that our ap-
plication could make use of as well. One of these ideas involves user selection of a group of
edges, after which the non-selected edges are hidden and the selected edges are drawn separately,
optionally in straightened out form. This would allow users to delve deeper into the details of a
graph than is currently possible.

9

6 Conclusion

We have designed and implemented a novel way of visualizing large compound graphs. By
separately visualizing a graph’s containment hierarchies and associations, it is possible to capture
both the graph’s overall structure and its fine details in a single view.

Treemaps ensure that large hierarchies can be visualized compactly, while remaining clear to the
viewer. A traditional boxes-and-lines representation is used for a detailed view on subgraphs and
their associations. A modified version of Holten’s hierarchical edge bundling technique is used
to draw associations focus area to the context area. Using edge bundling causes edges between
nodes with similar ancestry to curve towards each other.

These methods, when used together, provides users with a graph visualization that is both easy
to comprehend and navigate. The performance of the implementation is well enough to allow
for a smooth user experience.

There is still room for improvement in several areas. Implementing other kinds of hierarchy
visualization methods, such as the icicle plot, might improve clarity of the overall visualization.
Fine-tuning the rendering of edge bundles and user interaction with them, could also result in
better usability.

10

A Lua script documentation

The following section contains an overview of the scripting interface exposed by the application.
Lua is a weakly typed language and as such does not have a standard notation to strictly define
an API with. For the notation of function signatures in this document, a pseudo-C++ notation
has been used, including templates and default parameters. Function arguments are checked
at runtime for their correct type whenever possible, but it is still possible to cause undefined
behavior by incorrect usage of the script commands.

For more information about the Lua programming language and its usage, please refer to the
documentation on the official Lua site [3].

Note that the data types Graph, Node, Edge and Tool mentioned below are in fact all Lua’s
userdata type, but have been given a more specific name in the context of this document, for
clarity’s sake.

Callback functions

The following callback function types are used by various script commands. It is up to the script
writer to define a function implementing the correct callback interface and to supply it to the
appropriate script command.

Type name Arguments Return type Description
EdgeFilter (Edge edge) bool Given an edge, return whether or not the

edge conforms to a filtering condition.
NodeMeasure (Node node) number Given a graph node, returns the size of the

node according to an arbitrary measure.
NodeColorer (Node node) number, number,

number
Given a graph node, return a color for the
node in RGB format. The three return val-
ues each represent a single color channel
value within the range [0, 1].

EdgeColorer (Edge edge) number, number,
number, number,
number, number

Given an edge, return colors for each end
of the edge in RGB format. The first three
return values are the color channels for the
‘from’ end, the last three are for the ‘to’
end.

ClickHandler (Node node) Perform an action in response to the user
clicking on the given graph node.

Script commands

The following is a list of all available script commands that can be used to configure and manip-
ulate the application. Script commands can be entered in the application’s script console, or by
loading them from a script file.

11

Function Return
type

Description

General functions
script load(string filename) boolean Load and execute a Lua script from the

given filename. Returns true on success.
Graph functions
graph new() Graph Create a new graph object. Returns a ref-

erence to the new graph, or nil on failure.
graph loadDot(string filename) Graph Load a graph from the given filename in

Graphviz DOT format. Returns a reference
to the loaded graph, or nil on failure.

graph loadRsf(string filename,
table<string> attrNames = {})

Graph Load a graph from the given filename in
Rigi Standard Format. attrNames is a list
of keywords that should be interpreted as
node attributes. Returns a reference to the
loaded graph, or nil on failure.

graph hasNode(Graph graph, Node
node)

boolean Returns whether or not the given graph
contains the given node.

graph hasEdge(Graph graph, Edge
edge)

boolean Returns whether or not the given graph
contains the given edge.

graph addNode(Graph graph, Node
node)

Adds the given node to the given graph.

graph addEdges(Graph graph,
Graph edges)

Copies all the edges contained in the second
graph to the first graph.

graph getAttribute(
[Graph|Node|Edge] item, string
key)

string Returns the attribute value of the given key
for the given graph element. Returns an
empty string if the key does not exist.

graph getNode(Graph graph,
string name)

Node Returns a reference to the node with the
given name from the given graph. If the
graph does not contain such a node, returns
nil.

graph getNodesByAttr(Graph
graph, string key, string
value)

Graph Returns a new graph with all the nodes
from the given graph whose key attribute
has the given value.

graph getEdges(Graph graph,
EdgeFilter filter)

Graph Returns a new graph with all the edges from
the given graph that pass the given edge fil-
ter. See the definition of EdgeFilter call-
back.

graph getChildren(Graph graph,
Node node, EdgeFilter filter,
string direction = "out")

Graph Returns all the children of the given graph
node that are found by moving along its
edges in the given direction that pass the
given edge filter. Accepted values for
direction are "in", "out" and "both".

12

graph extractDAG(Graph graph,
Node root, EdgeFilter filter,
string direction = "out")

Graph Extract a Directed Acyclic Graph from the
given graph, starting at the given root
node, traversing only along edges in the
given direction that pass the given edge fil-
ter. See graph getChildren for values of
direction.

graph divideEdges(Graph edges,
Graph a, Graph b)

Graph,
Graph

Divides the given edges into two groups:

1. edges that connect nodes which are
both present in graph ‘a’

2. edges that connect nodes in graph ‘a’
with nodes in graph ‘b’

These edges are returned in a duo of graphs,
in the order listed above.

Graph view functions
gv setFocus(Graph graph) Shows the given graph in the focus area.
gv clearFocus() Removes any graph currently shown in the

focus area.
gv showTool(Tool tool, string
border)

Shows the given graph tool on the
given screen border. Accepted val-
ues for border are "topleft", "top",
"topright", "right", "bottomright",
"bottom", "bottomleft" and "left".

gv removeTool(string border) Removes any graph tool currently shown on
the given screen border. See gv showTool
for values of border.

gv showLinks(Graph edges, string
border, EdgeColorer colorer =
nil)

Show the given edges as links between the
focus graph and the graph tool positioned
on the given border. The edges will be col-
ored according to the given EdgeColorer
callback function. See gv showTool for val-
ues of border.

gv setBundlingStrength(number
strength)

Set the bundling strength of link curves.
strength is a value within the range [0, 1]
(default value: 0.85). A bundling strength
of 0 results in straight-lined links, while
a value of 1 results in completely bundled
curves.

13

Treemap Tool functions
treemap new(Graph tree, Node
root)

Tool Creates a new treemap tool for the given
graph, with its hierarchy starting at the
given root node. Returns a reference to the
new tool on success, or nil on failure.

treemap setLayout(Tool treemap,
string layout)

Sets the treemap layout algorithm for the
given treemap tool. Accepted values for
layout are "binarytree", "squarified"
and "strip".

treemap setMeasure(Tool treemap,
NodeMeasure measure)

Sets the node measuring callback function
for the given treemap tool. The treemap
will automatically get layed out anew, us-
ing the values supplied by the NodeMeasure
callback to determine the size of each
treemap element.

treemap setColorer(Tool treemap,
NodeColorer colorer)

Sets the node coloring callback function for
the given treemap tool. See the definition
of NodeColorer callback.

treemap setClickHandler(Tool
treemap, ClickHandler handler)

Sets the click handler callback function for
the given treemap tool. This callback will
be called whenever the user clicks on a node
in the treemap visualization. See the defi-
nition of ClickHandler callback.

14

B Design diagrams

Figure 5 shows an overview of the principal software modules that make up the Monopoly Graph
Viewer application, and the dependencies between them.

Figure 5: Software modules and their dependencies

15

Figure 6 shows a high-level view of the class structure within the Monopoly module.

Figure 6: High-level overview of classes making up the Monopoly module

16

References

[1] Danny Holten Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchi-
cal Data. IEEE Transactions on Visualization and Computer Graphics (TVCG; Proceedings
of Vis/InfoVis 2006), Vol. 12, No. 5, Pages 741 - 748, 2006.

[2] wxWidgets (http://www.wxwidgets.org)

[3] The Programming Language Lua (http://www.lua.org)

[4] Treemaps for space-constrained visualization of hierarchies
(http://www.cs.umd.edu/hcil/treemap-history)

[5] premake build script generation (http://premake.sourceforge.net)

[6] Rigi Group (http://www.rigi.cs.uvic.ca)

[7] Graphviz (http://www.graphviz.org)

17

